A trilinear restriction estimate with sharp dependence on transversality

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Bilinear Restriction Estimate for Paraboloids

X iv :m at h/ 02 10 08 4v 2 [ m at h. C A ] 1 3 D ec 2 00 2 Abstract. Recently Wolff [28] obtained a sharp L2 bilinear restriction theorem for bounded subsets of the cone in general dimension. Here we adapt the argument of Wolff to also handle subsets of “elliptic surfaces” such as paraboloids. Except for an endpoint, this answers a conjecture of Machedon and Klainerman, and also improves upon ...

متن کامل

A sharp bilinear cone restriction estimate

The purpose of this paper is to prove an essentially sharp L2 Fourier restriction estimate for light cones, of the type which is called bilinear in the recent literature. Fix d ≥ 3, denote variables in Rd by (x, xd) with x ∈ Rd−1, and let Γ = {x : xd = |x| and 1 ≤ xd ≤ 2}. Let Γ1 and Γ2 be disjoint conical subsets, i.e. Γi = {x ∈ Γ : x xd ∈ Ωi} where Ωi are disjoint closed subsets of the sphere...

متن کامل

A Sharp Bilinear Restriction Estimate for Elliptic Surfaces

X iv :m at h/ 02 10 08 4v 1 [ m at h. C A ] 7 O ct 2 00 2 Abstract. Recently Wolff [28] obtained a sharp L2 bilinear restriction theorem for bounded subsets of the cone in general dimension. Here we adapt the argument of Wolff to also handle subsets of “elliptic surfaces” such as paraboloids. Except for an endpoint, this answers a conjecture of Machedon and Klainerman, and also improves upon th...

متن کامل

A Trilinear Restriction Problem for the Paraboloid in R

We establish a sharp trilinear inequality for the extension operator associated to the paraboloid in R3. Our proof relies on a recent generalisation of the classical Loomis–Whitney inequality.

متن کامل

A sharp estimate for cover times on binary trees

We compute the second order correction for the cover time of the binary tree of depth n by (continuous-time) random walk, and show that with probability approaching 1 as n increases, √ τcov = √ |E|[ √ 2 log 2 ·n− logn/ √ 2 log 2+O((log logn)], thus showing that the second order correction differs from the corresponding one for the maximum of the Gaussian free field on the tree.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Mathematics

سال: 2018

ISSN: 1080-6377

DOI: 10.1353/ajm.2018.0044